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Abstract

We propose an action recognition system for surveillance scenarios, which wins
TRECVID 2020 [1] Activities in Extended Video (ActEV2) Challenge with a large
advantage of 23.8% ahead the runner up system. Our system develops a dense
spatial-temporal proposal generation model which collaborates with the state-of-
the-art action classifiers. The proposed system utilizes multiple state-of-the-art
modules and is trained on VIRAT Dataset with only released annotations. In this
paper, we demonstrate the architecture and algorithms with technique details of
our winner system.

1 Introduction

In the past decade, widely-deployed surveillance cameras have grown gradually. As a result, the
volume of streaming surveillance videos becomes overwhelmingly large dramatically, which makes it
difficult to process and analyze by human being. Meanwhile, it is a request of public safety for critical
surveillance events detection in real-time. There is thus strong incentive to develop fully-automated
methods to identify and localize activities in extended video collections and provide the capability
to alert and triage emergent videos. These methods will alleviate the current manual process of
monitoring by human operators and scale up with the growth of sensor proliferation in the near future.
An efficient and effective functionality to spatially and temporally detect or localize human activities
is central in surveillance video analysis. The Activities in Extended Videos Prize Challenge (ActEV)
seeks to encourage the development of real-time robust automatic activity detection algorithms
in surveillance scenarios. With the availability of large-scale video surveillance datasets such as
VIRAT [2] it aims to test and evaluate the surveillance activity detection systems on both detection
performance and processing speed.

To tackle the challenge, we propose a system which is able to generate dense spatio-temporal
proposals followed by varies of activity classification models. Moreover, we adopt a asynchronous
parallel design to further optimize the processing speed of the system. For proposal generation, we
develop an algorithm which contains spatial object detection and object tracking models to crop
object (person/vehicle) centred proposal cubes from the input videos. For activity classification, we
implements and optimize several spatial-aware activity classification algorithms and apply a fusion
and filtering method in the post-processing stage.

To foster further advantage of the field, we summarize our contribution as twofold:

1. We propose a dense spatio-temporal cube proposal paradigm to precisely localize activities
in surveillance videos and reduce false alarms.
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2. Our system has achieved the first place in the NIST TRECVID ActEV benchmark with
nAUDC@0.2Tfa = 0.42, which reports 23.8% ahead of the runner up system.

2 System

2.1 Problem Statement

In the series of NIST Activities in Extended Video (ActEV) evaluations, the task is activity detection
in videos with extended metadata. Given a set of untrimmed videos V = {Vi}, the system should
identify a set of activity instances A = {Ai} Each activity instance is defined by a three-tuple
Ai = (Vi, Li, Ci), meaning an activity of type Ci occurs at a spatio-temporal area Li in video Vi.

In the current dataset, VIRAT [2], V is limited within single-view videos from a surveillance camera
with a fixed point of view. In the current evaluation plan [3], the spatial localization precision is
not measured. The idea was that, after processed by the system, we still have human reviewers to
inspect the activity instances with the highest confidence scores for further usages. The performance
is thus measured by the recall of activity instances within a time limit of all positive frames plus Tfa

of negative frames, where Tfa is referred to as time-based false alarm rate.

2.2 Architecture

Figure 1: System Architecture

The architecture of the proposed system. To tackle the task of activity recognition, we adopt
an intermediate concept of spatio-temporal cube proposal. The system first generates candidate
proposals with frame-wise information such as objects. These proposals are filtered with a background
subtraction model. Then, action recognition models are applied on the proposals to predict per-class
confidence scores. Finally, a post-processed method is applied to merge and filter the scores and
output final activity instances.

2.3 Proposal Generation

In this section, we introduce the proposal generation stage of our system. First, we apply detection
and tracking methods to identify the candidate objects in the video; Second, we generate the spatio-
temporal cube proposals for activity classification.
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Detection and Tracking To conduct activity recognition, we first identify the candidate objects
(person, vehicle) in the video. For each frame i, we apply an object detection model to get objects
Oi = {oi,j | j = 1, · · · , ni} with object types ci,j and bounding boxes (x0, x1, y0, y1)i,j .Objects
are detected in a stride of every Sdet frames. Object detection methods [4, 5] optimized for video
scenario can also be used. A multiple object tracking algorithm is applied on the detected objects to
assign track ids to each of them as tr i,j .

Cube Proposal Previous works such as [6, 7, 8, 9] utilize the whole trajectory of each tracked
object as the proposal, which are spatio-temporal tube proposals. It generates proposals on resized
bounding boxes across frames. Tube proposal has several drawbacks . First, in action recognition
task, such tube proposals still require temporal activity localization in the later stage to determine
the existence of the activities on video clips, which would be more difficult than classification on fix
length video clips. Second, the objects in the tube proposal will suffer from the shape change when
being resized frame by frame. Third, the bounding boxes shift across frames also could harm visual
features extracting. All these problems could result in a high false alarm rate on action recognition.

In this work, we adopt a different form of proposals, which we define as spatio-temporal cube
proposals. A spatio-temporal cube proposal is defined by a six-tuple

pi = (x0, x1, y0, y1, t0, t1)i (1)

corresponding to boundaries in three dimensions.

Proposal Sampling For input videos with variable length, one straightforward approach is to cut
them into non-overlapping proposals with Dprop frames and process each one sequentially. Such
intuitive approach, such as in [10], would result in significant performance drop at the boundary
between clips, because it might break the completeness of activities when cutting proposals. To
handle the problem, we propose a dense overlapping proposals sampling algorithm. As illustrated in
Figure 2, a dense overlapping proposal system is defined by two parameters, i.e. duration Dprop and
stride Sprop . Proposals are generated within temporal windows of Dprop frames. For every temporal
window in Sprop  Dprop frames, video clips are sampled densely with overlapping. Generally,
non-overlapping proposal system can be treated as a downgraded case when Sprop = Dprop .

Figure 2: Dense Overlapping Proposals

Proposal Refinement To generate proposals in a temporal window from t0 to t1 = t0 +Dprop ,
we select seed track ids Tr t0 from the central frame tc =

t0+t1
2 . Their bounding boxes are enlarged

as the union across the temporal window

(x0, x1, y0, y1) = union({(x0, x1, y0, y1)i,j | t0  i  t1, tr i,j = tr tc,k})
k = 1, · · · , ntc

(2)

This algorithm is robust through identity switch in the tracking algorithm as it uses the stable seeds
from the central frame. It also ensures the coverage of moving objects by enlarging the bounding box
when it’s successfully tracked.

For now, the proposal generation system applies a frame-wise object detection with slight aid of
tracking in each of short video clips. The motion information is not yet explored. To product high
quality proposals, we apply a proposal filtering algorithm to eliminate the proposals that are unlikely
to contain activities.
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For each proposal, a foreground segmentation algorithm is implemented to generate a binary mask
for every Sbg frames for each video clip. We average the value of pixel masks in its cube to get its
foreground score fi. For proposals generated by object type c, those proposals with fi  Fc will be
filtered out, where Fc is a threshold. In experiment, Fc can be tuned on the training set.

2.4 Activity Recognition

In this section, we will introduce details about the implementation of activity recognition modules.
Given an input sequence of proposals, We followed the sparse-sampling strategy mentioned in [11]
to sample N frames for training and inference. To be specific, the video is evenly separated into N
segments. From each segment, we randomly selected 1 frame to generate the sampled clip Ci for
training.

The sampled clip is fed to an action recognition module V to get classification scores Xi.

Xi = Sigmoid(V(Ti)) (3)

Where Xi = {x1
i , x

2
i , ..., x

C
i } and Xi 2 RC . To transform the action recognition modules from

previous multi-class task to the realm of multi-label recognition, we modified the loss function for
optimization. Instead of traditional cross entropy loss (XE), we implemented a weighted binary
cross entropy loss (wBCE). In which, two weight parameters are adopted, the activity-wise weight
Wa = {w1

a, w
2
a, ..., w

C
a } and the positive-negative weight Wp = {w1

p, w
2
p, ..., w

C
p }. Wa balances the

training samples of different activities and Wp balances the positive and negative samples of a specific
activity. With the aligned label sequence of ith batch represented as Yi = {y1i , y2i , ..., yCi } 2 RC .
The calculation of wc
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c
a

(5)
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With the definition of these two weights, the derivation of losswBCE is:

losswBCE =
1

C

X

c2[C]

lossi,c (7)

lossi,c = �w
c
p[w

c
asgn(y

c
i ) · log(xc

i + (1� sgn(yci )) log(1� x
c
i ))] (8)

In which, sgn represents the signal function. Compared with vanilla BCE loss, we found wBCE loss
can significantly improve the fincal performance on internal validation set. The detailed results are
provided in Section 4.5.

Furthermore, we tried multiple action recognition modules and made late fusion action-wisely
according to the results on the validation set. We found each classifier does show superiority on
certain actions. Through the feedback from the online leaderboard, such fusion strategy can improve
the final performance with noticeable margins.

2.5 Activity Deduplication

As the system generates overlapping proposals, it could have duplicate predictions for some of the
proposals. This would result in a large amount of false alarms unless we deduplicate them.

For each proposal, there are C scores corresponding to each activity. We duplicate it into C proposals,
each with one activity score and perform deduplication in each type. Figure 3 is a diagram for our
deduplication algorithm.

1. Split the overlapping cubes of duration Dprop and stride Sprop into non-overlapping cubes
of duration Sprop . An output cube relies on all original cubes in the temporal window, with
an averaged score and an intersected bounding box.
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2. Merge the non-overlapping cubes of duration Sprop back into bDprop

Sprop
c groups of non-

overlapping cubes of duration Dprop . An output cube is merged from bDprop

Sprop
c cubes with an

averaged score and the union of bounding boxes.
3. Select the group where the maximum score resides.

The deduplication algorithm performs an interpolation upon the overlapping cubes. Each group in
step 3 contains information from every classification results, maximizing the information utilization.

Figure 3: Activity Deduplication Algorithm

3 Experiments

3.1 Dataset and Metrics

In TRECVID 2020, a new partition of the VIRAT [2] dataset is introduced with augmented annotation
of 35 activities. It contains 64 videos for training, 54 videos for validation, and 246 videos for testing.
The main metrics are nAUDC@0.2Tfa and Pmiss@0.15Tfa according to the evaluation plan[3].
Pmiss@0.15Tfa measures the recall of activity instances within a time limit of all positive frames
plus 15% of negative frames. nAUDC@0.2Tfa is the integration of Pmiss on Tfa 2 [0, 0.2]. The
challenge leaderboard scores the submitted predictions on the test set. In the next section, we report
the experimental results on both test set (leaderboard result) and on validation set.

3.2 Implementation Details

In the winner system, we apply Mask R-CNN [12] with a ResNet-101 [13] backbone from Detec-
tron2 [14] pre-trained on the Microsoft COCO dataset [15] as the object detector, with Sdet = 8.
Only person and vehicle classes are conducted. For tracking algorithm, we apply the work in [16] and
reuse the region-of-interest from the ResNet backbone as in [17, 18]. The proposals are generated
with Dprop = 64 and Sprop = 16.

The original annotation in VIRAT is object bounding-boxes in each activity, which cannot be directly
used to train activity classifiers. To prepare the training set for the activity classifiers, we develop
a label assignment algorithm. To match the proposals with the original annotation, we convert the
annotation of object bounding boxes into the cube proposals with duration Dprop and stride Sprop

with a matching algorithm. The proposal sampling algorithm and the proposal generation algorithm
are the same as described in former sections. For each proposal, we estimate the spatial intersection-
over-union (IoU) between it and ground truth annotations in the same temporal window. Then, the
label for this proposal is assigned as the each activity class with the maximum IoU score. Generally, a
proposal with at least one positive score is considered a positive proposal. For negative proposals, we
adopted the background subtraction, with a Gaussian mixture model from [19], algorithm to select
them. The proposal filter is set with a tolerance of Ppos = 0.05.

For activity classifiers, we re-implement multiple state-of-the-art models including R(2+1)D [20],
X3D [21], and Temporal Relocation Module (TRM). During training procedure, frames are cropped
with jittering [11]. For X3D and TRM, we trained modules with weights pre-trained on Kinetics [22].
For R(2+1)D modules, we trained modules with weighst pre-trained on IG65M [23].
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3.3 Quality analyze of Dense Spatio-temporal Proposals

First, we analyze the quality of our dense spatio-temporal proposals. We analyze the upper bound
performance of both overlapping and non-overlapping proposals on VIRAT validation set. The
experiments are performed by directly converting the ground truth annotations into the proposal
format with activity labels, and being scored by official metrics. The results are shown in Table 1 and
Table 2.

Table 1: Upper Bounds of Non-overlapping Proposals on VIRAT Validation Set

Duration (# frame) nAUDC@0.2Tfa

32 0.1208
64 0.0673
96 0.0688
128 0.0788

Table 2: Upper Bounds of Overlapping Proposals on VIRAT Validation Set

Duration / Stride (# frame) 16 32

32 0.0705 -
64 0.0127 0.0621
96 0.0275 0.0504

It is shown in the experiments that the non-overlapping proposal format reports 6.7%. The overlapping
proposals with duration 64 and stride 16 only have 1.3% systematic errors.

3.4 Performance of Proposal Filtering

We examine the quality of the proposals with and without the filter, as shown in Table 3 and 4. The
metrics are calculated by assigning ground truth labels to the proposals, simulating a perfect classifier.
The proposals are further filtered by IoU and reference coverage levels from 0, 0.1, to 0.9 to calculate
a partial result.

Table 3: Statistics of Proposals on VIRAT Validation Set

Name Unfiltered Proposals Filtered Proposals

Number of Proposals 211271 62831
Positive rate 0.1704 0.5204

Rate of unique label 0.4558 0.4415
Rate of two labels 0.4127 0.4252

Rate of three labels 0.1017 0.1060

Table 4: Proposal Quality Metrics on VIRAT Validation Set

nAUDC@0.2Tfa IoU Reference Coverage
Threshold Average � 0 � 0.5 Average � 0.5 � 0.9

Unfiltered Proposals 0.2358 0.0772 0.1518 0.1562 0.1125 0.4211
Filtered Proposals 0.2352 0.0772 0.1469 0.1563 0.1099 0.4280

With the dense cube proposals, the best nAUDC@0.2Tfa we can achieve with a ideal classifier is
0.08, as indicated in the IoU � 0 column. The IoU and reference coverage bounded scores are used to
measure the spatial matching quality of proposals, as the nAUDC@0.2Tfa does not consider spatial
dimensions. We can see that even with a condition of IoU � 0.5, our proposal can achieve up to
0.15, which indicates the spatial preciseness. The proposal filtering is also proved effective, which
removed 70% of original proposals without dropping the recall level.
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3.5 Performance of Classification and Fusion

In this section, we would introduce the results of R(2+1)D [20], X3D [21], and TRM on validation
set and reported the step-by-step fusion results on the official leader board.

According to the results in Table 5, we found R(2+1)D performed best on the validation set. However,
as shown in the figure below, every model shows better performance on certain activities than the
others. We merged these models’ outputs activity-wisely for the final submission according to the
experimental results on the validation set. We listed the history of milestone submissions on the

Table 5: Results of Activity Recognition Models on VIRAT Validation Set

Model Pretraining Input nAUDC@0.2Tfa Mean Pmiss@0.15Tfa

R(2+1)D IG65M 32⇥112⇥112 0.356 0.256
X3D Kinetics 16⇥312⇥312 0.383 0.284
TRM Kinetics 8⇥224⇥224 0.394 0.303

Figure 4: Activity-wise nAUDC@0.2Tfa results of three models on the validation set

leaderboard. The online evaluation system won’t give out results if the submission does not surpass
the previous system. So we can not give out the performance of every single model on the official
leaderboard. However, since each milestone submission surpassed the previous one with one extra
model added, we think it demonstrates that each model contributes to the final performance and
surpasses the others in certain activities.

Table 6: Results of Fusion Models on the Leaderboard

Model Training Data nAUDC@0.2Tfa

R(2+1)D Training set 0.438
R(2+1)D Training+validation sets 0.436
R(2+1)D+TRM Training set 0.431
R(2+1)D+TRM Training+validation sets 0.429
R(2+1)D+TRM+X3D Training set 0.424
R(2+1)D+TRM+X3D Training+validation sets 0.423
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3.6 Leaderboard Results

The TRECVID 2020 ActEV Leaderboard result 3 is shown in Table 7. Our system (INF) achieved an
nAUDC@0.2Tfa of 0.42307, which is 23.8% better than the runner up. We also achieved a mean
Pmiss@0.15Tfa of 0.33241, which is 31.9% better than the runner up. These extraordinary results
fully verify the effectiveness of our system with dense spatio-temporal cube proposals.

Table 7: TRECVID 2020 ActEV Leaderboard

Rank Team Best System nAUDC@0.2Tfa Mean Pmiss@0.15Tfa

1 INF INF (Ours) 0.42307 0.33241
2 BUPT-MCPRL MCPRL_S1 0.55515 0.48779
3 UCF UCF-P 0.58485 0.54730
4 TokyoTech_AIST TTA-SF2 0.79753 0.75502
5 CERTH-ITI P 0.86576 0.84454
6 Team UEC UEC 0.95168 0.95329
7 kindai_kobe kind_ogu_baseline 0.96820 0.96443

4 Conclusion

In this paper, we present an action recognition system for surveillance scenarios, which wins
TRECVID ActEV Challenge 2020 with a large advantage of 23.8% over the runner up. In our
system, we propose a dense spatio-temporal proposal paradigm to precisely localize activities in
surveillance videos and reduce false alarms. We proved the effectiveness and advantage of our novel
proposal format. With state-of-the-art activity recognition models, it achieved the new state-of-the-art
performance in TRECVID ActEV with nAUDC@0.2Tfa = 0.42.
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